126 research outputs found

    Excitations in correlated superfluids near a continuous transition into a supersolid

    Full text link
    We study a superfluid on a lattice close to a transition into a supersolid phase and show that a uniform superflow in the homogeneous superfluid can drive the roton gap to zero. This leads to supersolid order around the vortex core in the superfluid, with the size of the modulated pattern around the core being related to the bulk superfluid density and roton gap. We also study the electronic tunneling density of states for a uniform superconductor near a phase transition into a supersolid phase. Implications are considered for strongly correlated superconductors.Comment: 4 pages, 2 figures, published versio

    Pair density wave instability and Cooper pair insulators in gapped fermion systems

    Full text link
    By analyzing simple models of fermions in lattice potentials we argue that the zero-temperature pairing instability of any ideal band-insulator occurs at a finite momentum. The resulting supersolid state is known as "pair density wave". The pairing momentum at the onset of instability is generally incommensurate as a result of phase-space restrictions and relative strengths of interband and intraband pairing. However, commensurate pairing occurs in the strong-coupling limit and becomes a Cooper-channel analogue of the Halperin-Rice exciton condensation instability in indirect bandgap semiconductors. The exceptional sensitivity of incommensurate pairing to quantum fluctuations can lead to a strongly-correlated insulating regime and a non-BCS transition, even in the case of weak coupling as shown by an exact renormalization group analysis.Comment: Proceedings article for SCES 2010. To appear in Journal of Physics: Conference Serie

    Effect of local charge fluctuations on spin physics in the Neel state of La2_2CuO4_4

    Full text link
    We explore the effect of local charge fluctuations on the spin response of a Mott insulator by deriving an effective spin model, and studying it using Schwinger boson mean field theory. Applying this to La2_2CuO4_4, we show that an accurate fit to the magnon dispersion relation, measured by Coldea {\em et al.} [Phys. Rev. Lett. {\bf 86}, 5377 (2001)] is obtained with Hubbard model parameters U2.34eVU \approx 2.34 eV, and t360meVt \approx 360 meV. These parameters lead to estimates of the staggered magnetization (ms0.25m_s \approx 0.25), spin wave velocity (c800meVc\approx 800 meV-\AA), and spin stiffness (ρs24meV\rho_s \approx 24 meV). In particular the staggered moment as well as the effective local moment are renormalized to smaller values compared to the Heisenberg model due to local charge fluctuations in the Hubbard model. The dynamical structure factor shows considerable weight in the continuum along the zone boundary as well as secondary peaks that may be observed in high resolution neutron scattering experiments.Comment: Manuscript considerably revised following referee comments. Also added a brief discussion of sum rules. 8 pages, 6 eps figure

    Use of quantum quenches to probe the equilibrium current patterns of ultracold atoms in an optical lattice

    Full text link
    Atomic bosons and fermions in an optical lattice can realize a variety of interesting condensed matter states that support equilibrium current patterns in the presence of synthetic magnetic fields or non-abelian gauge fields. As a route to probing such mass currents, we propose a nonequilibrium quantum quench of the Hamiltonian that dynamically converts the current patterns into experimentally measurable real-space density patterns. We illustrate how a specific such "unidirectional" quench of the optical lattice can be used to uncover checkerboard and stripe current orders in lattice Bose superfluids and Fermi gases, as well as chiral edge currents in an integer quantum Hall state.Comment: 5 pages, 4 figures, Slightly revised, to appear in Phys. Rev. A (Rapid Communication

    Quantum paramagnetic ground states on the honeycomb lattice and field-induced transition to N\'eel order

    Full text link
    Motivated by recent experiments on Bi3_3Mn4_4O12_{12}(NO3_3), and a broader interest arising from numerical work on the honeycomb lattice Hubbard model, we have studied the effect of a magnetic field on honeycomb lattice spin models with quantum paramagnetic ground states. For a model with frustrating second-neighbor exchange, J2J_2, we use a Lindemann-like criterion within spin wave theory to show that N\'eel order melts beyond a critical J2J_2. The critical J2J_2 increases with a magnetic field, implying the existence of a field-induced paramagnet-N\'eel transition over a range of J2J_2. We also study bilayer model using a spin-SS generalization of bond operator mean field theory. We show that there is a N\'eel-dimer transition for various spin values with increasing bilayer coupling, and that the resulting interlayer dimer state undergoes a field induced transition into a state with transverse N\'eel order. Finally, we study a spin-3/2 model which interpolates between the Heisenberg model and the Affleck-Kennedy-Lieb-Tasaki (AKLT) parent Hamiltonian. Using exact diagonalization, we compute the fidelity susceptibility to locate the Neel-AKLT quantum critical point, obtain the spin gap of the AKLT parent Hamiltonian, and argue that AKLT state also undergoes field-induced Neel ordering.Comment: 8 pages, revised longer version of arXiv:1012.0316. Corrected factor of 2 error in Eq.[16], replotted Fig.[4] and revised the critical Jc/J1J_c/J_1 needed to stabilize interlayer dimer state. We thank S. V. Isakov for discussions which uncovered this erro

    Spin-orbit coupled j=1/2 iridium moments on the geometrically frustrated fcc lattice

    Full text link
    Motivated by experiments on the double perovskites La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled j=1/2 iridium moments on the three-dimensional, geometrically frustrated, face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear A-type antiferromagnetism, stripe order with moments along the [111]-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures. We argue that existing thermodynamic data on these iridates underscores the presence of a dominant Kitaev exchange, and also suggest a resolution to the puzzle of why La2ZnIrO6 exhibits `weak' ferromagnetism, but La2MgIrO6 does not.Comment: 5 pages, 5 figs, significantly revised to address referee comments, to appear in PRB Rapid Com

    Collective modes and superflow instabilities of strongly correlated Fermi superfluids

    Full text link
    We study the superfluid phase of the one-band attractive Hubbard model of fermions as a prototype of a strongly correlated s-wave fermion superfluid on a lattice. We show that the collective mode spectrum of this superfluid exhibits, in addition to the long wavelength sound mode, a sharp roton mode over a wide range of densities and interaction strengths. We compute the sound velocity and the roton gap within a generalized random phase approximation (GRPA) and show that the GRPA results are in good agreement, at strong coupling, with a spin wave analysis of the appropriate strong-coupling pseudospin model. We also investigate, using this two-pronged approach, the breakdown of superfluidity in the presence of a supercurrent. We find that the superflow can break down at a critical flow momentum via several distinct mechanisms - depairing, Landau instabilities or dynamical instabilities - depending on the dimensionality, the interaction strength and the fermion density. The most interesting of these instabilities is a charge modulation dynamical instability which is distinct from previously studied dynamical instabilities of Bose superfluids. The charge order associated with this instability can be of two types: (i) a commensurate checkerboard modulation driven by softening of the roton mode at the Brillouin zone corner, or, (ii) an incommensurate density modulation arising from superflow-induced finite momentum pairing of Bogoliubov quasiparticles. We elucidate the dynamical phase diagram showing the critical flow momentum of the leading instability over a wide range of fermion densities and interaction strengths and point out implications of our results for experiments on cold atom fermion superfluids in an optical lattice.Comment: 14 pages, 10 figures. Corrected 3d phase diagram. References added. Minor changes in tex
    corecore